Problem of the Week
 Problem B and Solution
 That's About Right

Problem

(a) Place the digits $1,3,6,7,8$, and 9 in the boxes shown so that each box contains a different digit, and the sum is as close as possible to 99.

(b) The digits 5, 6, and 8 have been placed in three of the boxes shown. Place the digits $0,1,2,3,4,7$, and 9 in the remaining boxes so that each box contains a different digit, and the sum is as close as possible to 1000 .

Not printing this page? Try our interactive worksheet.

Solution

(a) Notice that 98 is the closest number to 99 that could possibly be formed using the digits $1,3,6,7,8$, and 9 . Let's see if we can arrange the remaining digits, $1,3,6$, and 7 , to get a sum of 98 .

Using the digits $1,3,6$, and 7 , to get a sum with a ones digit of 8 , we must place the 1 and the 7 in the two boxes in the ones column. If we place the remaining digits, 3 and 6 , in the tens column, we will get a sum with a tens digit of 9 . Therefore, it is possible to arrange the digits to get a sum of 98 , which is the closest possible sum to 99 . We also see that there are four possible ways to arrange the digits in the boxes to produce this sum.

(b) Given the digits $0,1,2,3,4,7$, and 9 , along with the placement of the 6 , the closest number to 1000 that could be formed is 0976 . The next closest number is 1026 .

We will first see if we can place the digits to get a sum of 0976. If the sum is 0976, then the digits 0 , 9 , and 7 have been placed, and the remaining boxes will be filled with the digits $1,2,3$, and 4 . Of these digits, the only two that have a sum with ones digit 6 are 2 and 4 . Therefore, the 2 and the 4 would need to go in the ones column. This leaves 1 and 3 to be placed. Looking at the tens column of the sum, we need to place one of these numbers in the tens column so that the sum of that number with 8 has a ones digit of 7 . This is not possible. Therefore, we see that it is not possible to place the numbers so that the sum is 0976 .

Next, we try to place the digits to get a sum of 1026. If the sum is 1026 , then the digits 0,1 , and 2 have been placed, and the remaining boxes must be filled with the digits $3,4,7$, and 9 . Of these digits, the only two that have a sum with ones digit 6 are 7 and 9 . Therefore, the 7 and the 9 would need to go in the ones column. This leaves 3 and 4 to be placed. Looking at the tens column of the sum, we need to place one of these numbers in the tens column so that the sum of that number with 8 and 1 (the carry from the ones column) has a ones digit of 2 . This is possible if we place the 3 in this box. That leaves the 4 to go in the empty box in the hundreds column. Indeed, we see that the sum of 4 with 5 and 1 (the carry from the tens column) is 10 , as required.
Thus, it is possible to arrange the digits to get a sum of 1026, and this is the closest we can get to a sum of 1000 . We see that there are two possible ways to arrange the digits in the boxes to produce this sum.

Extension: Can you find a better solution for (b) by placing the 5, 6, and 8 elsewhere?

