

Problem of the Week Problem C and Solution
 Partitioned Pentagon

Problem

Consider pentagon $P Q R S T$. Starting at P and moving around the pentagon, the vertices are labelled P, Q, R, S, and T, in order. The pentagon has right angles at P, Q, and R, obtuse angles at S and T, and an area of $1000 \mathrm{~cm}^{2}$. Point V lies inside the pentagon such that $\angle P T V, \angle T V S$, and $\angle V S R$ are right angles. Point U lies on $T V$ such that $\triangle S T U$ has an area of $210 \mathrm{~cm}^{2}$. Also, it is known that $P Q=50 \mathrm{~cm}, S R=15 \mathrm{~cm}$, and $T U=30 \mathrm{~cm}$.
Determine the length of $P T$.

Solution

Extend $T V$ to meet $Q R$ at W. We mark this and all of the given information on the diagram.

To find the area of a triangle, multiply the length of the base by the height and divide by 2 . In $\triangle S T U$, the base $T U$ has length 30 cm . The corresponding height of $\triangle S T U$ is the perpendicular distance from $T U$ (extended) to vertex S, namely $S V$.

Since the area of $\triangle S T U$ is given to be $210 \mathrm{~cm}^{2}$,

$$
\begin{aligned}
210 & =\frac{30 \times S V}{2} \\
210 & =15 \times S V \\
14 & =S V
\end{aligned}
$$

We know that $T W=P Q=50, V W=S R=15$, and $T W=T U+U V+V W$.
It follows that $50=30+U V+15$ and $U V=5 \mathrm{~cm}$.
Now we can relate the total area of the pentagon to the areas of the shapes inside.

$$
\text { Area } \begin{aligned}
P Q R S T & =\text { Area } P Q W T+\text { Area } R S V W+\text { Area } \triangle S U V+\text { Area } \triangle S T U \\
1000 & =P Q \times P T+S V \times S R+\frac{U V \times S V}{2}+210 \\
1000 & =50 \times P T+14 \times 15+\frac{5 \times 14}{2}+210 \\
1000 & =50 \times P T+210+35+210 \\
1000 & =50 \times P T+455 \\
1000-455 & =50 \times P T \\
545 & =50 \times P T \\
\frac{545}{50} & =P T
\end{aligned}
$$

Therefore, $P T=10.9 \mathrm{~cm}$.

