

Problem of the Week Problem C and Solution
 All Squared Up

Problem

Ziibi drew a square. Starting at one corner and moving around the square, he labelled the vertices J, K, L, and M, in order. He drew points P and Q outside the square so that both $\triangle J M P$ and $\triangle M L Q$ are equilateral. Determine the measure, in degrees, of $\angle M P Q$.

Solution

Since $J K L M$ is a square, $J K=K L=L M=M J$.
Since $\triangle J M P$ is equilateral, $M J=J P=M P$.
Since $\triangle M L Q$ is equilateral, $L M=L Q=Q M$.
It follows that

$$
J K=K L=L M=M J=J P=M P=L Q=Q M .
$$

Each angle in a square is 90°. Therefore, $\angle J M L=90^{\circ}$.
Each angle in an equilateral triangle is 60°. Therefore, $\angle J M P=60^{\circ}$ and $\angle L M Q=60^{\circ}$.

A complete revolution is 360°. Since $\angle P M Q, \angle J M P, \angle J M L$, and $\angle L M Q$ form a complete revolution, then

$$
\begin{aligned}
\angle P M Q & =360^{\circ}-\angle J M P-\angle J M L-\angle L M Q \\
& =360^{\circ}-60^{\circ}-90^{\circ}-60^{\circ} \\
& =150^{\circ}
\end{aligned}
$$

In $\triangle M P Q, M P=Q M$ and the triangle is isosceles. It follows that $\angle M P Q=\angle M Q P$.

In a triangle, the sum of the three angles is 180°. Since $\angle P M Q=150^{\circ}$, then the sum of the two remaining equal angles must be 30°. Therefore, each of the remaining two angles must equal 15° and it follows that $\angle M P Q=15^{\circ}$.

