

Problem of the Week Problem C and Solution All Squared Up

Problem

Ziibi drew a square. Starting at one corner and moving around the square, he labelled the vertices J, K, L, and M, in order. He drew points P and Q outside the square so that both $\triangle JMP$ and $\triangle MLQ$ are equilateral. Determine the measure, in degrees, of $\angle MPQ$.

Solution

Since JKLM is a square, JK = KL = LM = MJ. Since $\triangle JMP$ is equilateral, MJ = JP = MP.

Since $\triangle MLQ$ is equilateral, LM = LQ = QM.

It follows that

$$JK = KL = LM = MJ = JP = MP = LQ = QM.$$

Each angle in a square is 90°. Therefore, $\angle JML = 90^{\circ}$.

Each angle in an equilateral triangle is 60°. Therefore, $\angle JMP = 60^{\circ}$ and $\angle LMQ = 60^{\circ}$.

A complete revolution is 360°. Since $\angle PMQ$, $\angle JMP$, $\angle JML$, and $\angle LMQ$ form a complete revolution, then

$$\angle PMQ = 360^{\circ} - \angle JMP - \angle JML - \angle LMQ$$
$$= 360^{\circ} - 60^{\circ} - 90^{\circ} - 60^{\circ}$$
$$= 150^{\circ}$$

In $\triangle MPQ$, MP = QM and the triangle is isosceles. It follows that $\angle MPQ = \angle MQP$.

In a triangle, the sum of the three angles is 180° . Since $\angle PMQ = 150^{\circ}$, then the sum of the two remaining equal angles must be 30° . Therefore, each of the remaining two angles must equal 15° and it follows that $\angle MPQ = 15^{\circ}$.