

Problem of the Week
Problem C and Solution
Two Paths

Problem

Points R, S, T, U, V, and W lie in a straight line. There are two curved paths from R to W. The upper path is a semi-circle with diameter $R W$. The lower path is made up of five semi-circles with diameters $R S, S T, T U, U V$, and $V W$.

It is also known that the distance from R to W in a straight line is 1000 m , and $R S=S T=T U=U V=V W$.

Starting at the same time, John and Betty ride their bicycles along these paths from R to W. Betty follows the upper path and John follows the lower path. If they bike at the same speed, who will arrive at W first?

Solution

The circumference of a circle is found by multiplying its diameter by π. To find the circumference of a semi-circle, we divide its circumference by 2 .

The length of the upper path is equal to half the circumference of a circle with diameter 1000 m . Therefore, the length of the upper path is equal to $\pi \times 1000 \div 2=500 \pi \mathrm{~m}$. (This is approximately 1570.8 m .)
Each of the semi-circles along the lower path have the same diameter. The diameter of each of these semi-circles is $1000 \div 5=200 \mathrm{~m}$. The length of the lower path is equal to half the circumference of five circles, each with diameter 200 m . Therefore, the distance along the lower path is equal to

$$
5 \times(\pi \times 200 \div 2)=5 \times(100 \pi)=500 \pi \mathrm{~m}
$$

Since both John and Betty bike at the same speed and both travel the same distance, they will arrive at point W at the same time. The answer to the problem may surprise you.

Extension:

If you were to extend the problem so that Betty travels the same route but John travels along a lower path made up of 100 semi-circles of equal diameter from R to W, they would still both travel exactly the same distance, $500 \pi \mathrm{~m}$. Check it out!

