

Problem of the Week Problem C and Solution

 Altitude Change

 Altitude Change}

Problem

In acute $\triangle A B C$, two altitudes have been drawn in. Point M lies on $A B$ so that $C M$ is an altitude of $\triangle A B C$, and point N lies on $A C$ so that $B N$ is an altitude of $\triangle A B C$.

Suppose $C M=32 \mathrm{~cm}, A B=36 \mathrm{~cm}$, and $A C=40 \mathrm{~cm}$. Determine the length of altitude $B N$.

Solution

The area of a triangle is determined using the formula

$$
\text { area }=\frac{\text { base } \times \text { height }}{2}
$$

The height of the triangle is the length of an altitude and the base of the triangle is the length of the side to which a particular altitude is drawn.

Thus,

$$
\text { Area } \begin{aligned}
\triangle A B C & =\frac{A B \times C M}{2} \\
& =\frac{36 \times 32}{2} \\
& =576 \mathrm{~cm}^{2}
\end{aligned}
$$

Also,

$$
\text { Area } \begin{aligned}
\triangle A B C & =\frac{A C \times B N}{2} \\
576 & =\frac{40 \times B N}{2} \\
1152 & =40 \times B N \\
B N & =28.8 \mathrm{~cm}
\end{aligned}
$$

Therefore, the length of altitude $B N$ is 28.8 cm .

