Problem of the Week

 Problem D and SolutionFraction Distraction

Problem

Find all ordered pairs, (a, b), that satisfy $\frac{a-b}{a+b}=9$ and $\frac{a b}{a+b}=-60$.

Solution

Multiplying both sides of the first equation, $\frac{a-b}{a+b}=9$, by $a+b$ gives $a-b=9 a+9 b$ and so $-8 a=10 b$ or $-4 a=5 b$. Thus, $a=-\frac{5}{4} b$.
Multiplying both sides of the second equation, $\frac{a b}{a+b}=-60$, by $a+b$ gives $a b=-60 a-60 b$.
Substituting $a=-\frac{5}{4} b$ into $a b=-60 a-60 b$, we get

$$
\begin{aligned}
a b & =-60 a-60 b \\
\left(-\frac{5}{4} b\right)(b) & =-60\left(-\frac{5}{4} b\right)-60 b \\
-\frac{5}{4} b^{2} & =75 b-60 b \\
-\frac{5}{4} b^{2} & =15 b \\
b^{2} & =-12 b \\
b^{2}+12 b & =0
\end{aligned}
$$

Notice that $b=0$ satisfies this equation. Thus $b=0$ is one possibility. When $b \neq 0$, we can divide both sides of the equation by b to get $b+12=0$, or $b=-12$. Thus, $b=0$ or $b=-12$. If $b=0$, then $a=-\frac{5}{4}(0)=0$. But this gives us a denominator of 0 in each of the original equations. Therefore, $b \neq 0$.
If $b=-12$, then $a=-\frac{5}{4}(-12)=15$.
Therefore, the only ordered pair that satisfies both equations is $(15,-12)$.

