

Problem of the Week Problem D and Solution Which Term is Which?

Problem

In $\triangle P Q R, \angle P R Q=90^{\circ}$. An altitude is drawn in $\triangle P Q R$ from R to $P Q$, intersecting $P Q$ at S. A median is drawn in $\triangle P S R$ from P to $S R$, intersecting $S R$ at T.

If the length of the median $P T$ is 39 and the length of $P S$ is 36 , determine the length of $Q S$.
NOTE: An altitude of a triangle is a line segment drawn from a vertex of the triangle perpendicular to the opposite side. A median is a line segment drawn from a vertex of the triangle to the midpoint of the opposite side.

Solution

Since T is a median in $\triangle P S R, S T=T R$. Let $S T=T R=a$. Let $P R=b, Q S=c$, and $Q R=d$. The variables and the given information, $P S=36$ and $P T=39$, are shown in the diagram.

Since $\triangle P S T$ contains a right angle at S,

$$
\begin{aligned}
S T^{2} & =P T^{2}-P S^{2} \\
a^{2} & =39^{2}-36^{2} \\
& =225
\end{aligned}
$$

Then, since $a>0, a=15$ follows. Thus, $S R=2 a=30$.
Since $\triangle P S R$ contains a right angle at S,

$$
\begin{aligned}
P R^{2} & =P S^{2}+S R^{2} \\
b^{2} & =36^{2}+30^{2} \\
& =2196
\end{aligned}
$$

Then, since $b>0, b=\sqrt{2196}$ follows.
We will now use $a=15$ and $b=\sqrt{2196}$ in the three solutions that follow.

Solution 1

In $\triangle P S R$ and $\triangle P R Q, \angle P S R=\angle P R Q=90^{\circ}$ and $\angle S P R=$ $\angle Q P R$, a common angle. So $\triangle P S R$ is similar to $\triangle P R Q$. It follows that

$$
\begin{aligned}
\frac{P S}{P R} & =\frac{P R}{P Q} \\
\frac{36}{\sqrt{2196}} & =\frac{\sqrt{2196}}{36+c} \\
1296+36 c & =2196 \\
36 c & =900 \\
c & =25
\end{aligned}
$$

Thus, the length of $Q S$ is 25 .

Solution 2

Since $\triangle R S Q$ contains a right angle at $S, Q R^{2}=Q S^{2}+S R^{2}=c^{2}+30^{2}=c^{2}+900$.
Therefore, $d^{2}=c^{2}+900$.
Since $\triangle P Q R$ contains a right angle at $R, P Q^{2}=P R^{2}+Q R^{2}$. Therefore, $(36+c)^{2}=(\sqrt{2196})^{2}+d^{2}$, which simplifies to $1296+72 c+c^{2}=2196+d^{2}$. This further simplifies to $c^{2}+72 c=900+d^{2}$.
Substituting $d^{2}=c^{2}+900$, we obtain $c^{2}+72 c=900+c^{2}+900$. Simplifying, we get $72 c=1800$ and $c=25$ follows.

Thus, the length of $Q S$ is 25 .

Solution 3

Position $\triangle P Q R$ on the $x y$-plane so that $P Q$ lies along the y axis, and altitude $S R$ lies along the positive x-axis with S at the origin. Then P has coordinates $(0,36), T$ has coordinates $(15,0)$, and R has coordinates (30, 0).
Since Q is on the y-axis, let Q have coordinates $(0, b)$ with $b<0$.
Notice that
slope $P R=\frac{36-0}{0-30}=\frac{-6}{5}$ and slope $Q R=\frac{b-0}{0-30}=\frac{b}{-30}$

Since $\angle P R Q=90^{\circ}, P R \perp Q R$, and so their slopes are negative reciprocals of each other. That is, $\frac{b}{-30}=\frac{5}{6}$, and so $b=-25$.
It then follows that the coordinates of Q are $(0,-25)$. Thus, the length of $Q S$ is 25 .

