

Problem of the Week Problem D and Solution

Blocked Numbers

Problem

Twelve blocks are arranged as illustrated in the diagram. Each letter shown on the front of a block represents a number. The sum of the numbers on any four consecutive blocks is 25 .
Determine the value of $B+F+K$.

Solution

Since the sum of the numbers on any four consecutive blocks is the same, looking at the first five blocks, we have

$$
4+B+C+D=B+C+D+E
$$

Subtracting B, C, and D from both sides gives $E=4$. Similarly, looking at the fifth through ninth blocks, we can show $J=4$.

Again, since the sum of the numbers on any four consecutive blocks is the same, looking at the third through seventh blocks, we have

$$
C+D+E+F=D+E+F+5
$$

Subtracting D, E, and F from both sides gives $C=5$. Similarly, looking at the seventh through eleventh blocks, we can show $L=5$.

Once more, since the sum of the numbers on any four consecutive blocks is the same, looking at the eighth through twelfth blocks, we have

$$
H+J+K+L=J+K+L+7
$$

Subtracting J, K, and L from both sides, gives $H=7$. Similarly, looking at the fourth through eighth blocks, we can show $D=7$.
Filling in the above information, the blocks now look like:

We will present two different solutions from this point.

Solution 1:

Since the sum of any four consecutive numbers is 25 , using the first 4 blocks

$$
\begin{aligned}
4+B+5+7 & =25 \\
B+16 & =25 \\
B & =9
\end{aligned}
$$

Similarly, we can show $F=9$ and $K=9$.
Therefore, $B+F+K=27$.

Solution 2:

We note that the twelve blocks are three sets of four consecutive blocks. Each of these three sets have a total of 25 , so the total sum of the blocks is $3 \times 25=75$.
The sum is also

$$
4+B+5+7+4+F+5+7+4+K+5+7=48+B+F+K
$$

This means

$$
48+B+F+K=75
$$

or

$$
B+F+K=27
$$

Therefore, $B+F+K=27$.

