# Problem of the Week Problem D and Solution 

Sale Boats

## Problem

Harold, a marina manager, purchased two boats. He then sold the boats, the first at a profit of $40 \%$ and the second at a profit of $60 \%$. The total profit on the sale of the two boats was $54 \%$ and $\$ 88704$ was the total selling price of the two boats. What did Harold originally pay for each of the two boats?

## Solution

## Solution 1

Let $a$ represent what Harold paid for the first boat, in dollars, and $b$ represent what he paid for the second boat, in dollars.

The profit on the sale of the first boat was $40 \%$ or $0.4 a$ dollars. Thus, the first boat sold for $a+0.4 a=1.4 a$ dollars. The profit on the sale of the second boat was $60 \%$ or $0.6 b$ dollars. Thus, the second boat sold for $b+0.6 b=1.6 b$ dollars. The total selling price of the two boats was $\$ 88704$, so we have

$$
\begin{equation*}
1.4 a+1.6 b=88704 \tag{1}
\end{equation*}
$$

Harold bought both boats for a total of $(a+b)$ dollars. The profit on the sale of the two boats was $54 \%$ or $0.54(a+b)$ dollars. The two boats sold for $(a+b)+0.54(a+b)=1.54(a+b)$ dollars. But the total selling price was $\$ 88704$, so

$$
\begin{aligned}
1.54(a+b) & =88704 \\
a+b & =88704 \div 1.54 \\
a+b & =57600 \\
a & =57600-b
\end{aligned}
$$

Substituting $a=57600-b$ into equation (1) gives

$$
\begin{aligned}
1.4(57600-b)+1.6 b & =88704 \\
80640-1.4 b+1.6 b & =88704 \\
0.2 b & =8064
\end{aligned}
$$

Dividing by 0.2 , we get $b=40320$. Since $b=40320$ and $a+b=57600$, then $a=17280$ follows.

Therefore, Harold paid \$17280 for the first boat and \$40320 for the second boat.

## Solution 2

Let $a$ represent what Harold paid for the first boat, in dollars, and $b$ represent what he paid for the second boat, in dollars.
The profit on the sale of the first boat was $40 \%$ or $0.4 a$ dollars. The first boat sold for $a+0.4 a=1.4 a$ dollars. The profit on the sale of the second boat was $60 \%$ or $0.6 b$ dollars. The second boat sold for $b+0.6 b=1.6 b$ dollars. The total selling price of the two boats was $\$ 88704$ so we have

$$
1.4 a+1.6 b=88704
$$

Multiplying by 5, we get

$$
\begin{equation*}
7 a+8 b=443520 \tag{1}
\end{equation*}
$$

Harold bought both boats for a total of $(a+b)$ dollars. The profit on the sale of the two boats was $54 \%$ or $0.54(a+b)$ dollars. The total profit is the sum of the profit from the sale of each boat, so

$$
\begin{aligned}
0.54(a+b) & =0.4 a+0.6 b \\
0.54 a+0.54 b & =0.4 a+0.6 b \\
0.14 a & =0.06 b
\end{aligned}
$$

Multiplying by 50 , we get

$$
\begin{equation*}
7 a=3 b \tag{2}
\end{equation*}
$$

Substituting $3 b$ for $7 a$ into equation (1), we get $3 b+8 b=443520$ or $11 b=443520$, and $b=40320$ follows.

Substituting $b=40320$ into equation (2), we get $7 a=120960$, and $a=17280$ follows.

Therefore, Harold paid $\$ 17280$ for the first boat and $\$ 40320$ for the second boat.

