

Problem of the Week Problem D and Solution
 This Angle Isn't Bad

Problem

Ewan drew rhombus $A B C D$. Recall that a rhombus is a quadrilateral with parallel opposite sides, and all four sides of equal length. In Ewan's rhombus, H is on $B C$ in between B and C, and K is on $C D$ in between C and D, such that $A B=A H=H K=K A$.

Determine the measure, in degrees, of $\angle B A D$.

Solution

Since $A B C D$ is a rhombus, we know $A B=B C=C D=D A$. We're also given that $A B=A H=H K=K A$. Let $\angle A D K=x^{\circ}$.

Since $A H=H K=K A, \triangle A H K$ is an equilateral triangle and each angle in $\triangle A H K$ is 60°. In particular, $\angle H A K=60^{\circ}$.
In $\triangle A D K, A D=A K$ and so $\triangle A D K$ is isosceles. Therefore, $\angle A K D=\angle A D K=x^{\circ}$. Then $\angle D A K=(180-2 x)^{\circ}$.
Since $A B C D$ is a rhombus, $A B \| C D$ and $\angle A D C+\angle B C D=180^{\circ}$. It follows that $\angle B C D=(180-x)^{\circ}$. But in the rhombus we also have $B C \| A D$ and $\angle B C D+\angle A B C=180^{\circ}$. It follows that $\angle A B C=180^{\circ}-(180-x)^{\circ}=x^{\circ}$.
In $\triangle A H B, A H=A B$ and so $\triangle A H B$ is isosceles. Therefore, $\angle A H B=\angle A B H=x^{\circ}$. Then $\angle B A H=(180-2 x)^{\circ}$.

Since $A B C D$ is a rhombus, $B C \| A D$, so

$$
\begin{aligned}
\angle B A D & =180^{\circ}-\angle A B C \\
(180-2 x)^{\circ}+60^{\circ}+(180-2 x)^{\circ} & =180^{\circ}-x^{\circ} \\
(420-4 x)^{\circ} & =(180-x)^{\circ} \\
240^{\circ} & =(3 x)^{\circ} \\
x^{\circ} & =80^{\circ}
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\angle B A D & =(180-x)^{\circ} \\
& =180^{\circ}-80^{\circ} \\
& =100^{\circ}
\end{aligned}
$$

Therefore, $\angle B A D=100^{\circ}$.

