

Problem of the Week Problem D and Solution This Angle Isn't Bad

Problem

Ewan drew rhombus ABCD. Recall that a rhombus is a quadrilateral with parallel opposite sides, and all four sides of equal length. In Ewan's rhombus, H is on BC in between B and C, and K is on CD in between C and D, such that AB = AH = HK = KA.

Determine the measure, in degrees, of $\angle BAD$.

Solution

Since ABCD is a rhombus, we know AB = BC = CD = DA. We're also given that AB = AH = HK = KA. Let $\angle ADK = x^{\circ}$.

Since AH = HK = KA, $\triangle AHK$ is an equilateral triangle and each angle in $\triangle AHK$ is 60°. In particular, $\angle HAK = 60^{\circ}$.

In $\triangle ADK$, AD = AK and so $\triangle ADK$ is isosceles. Therefore, $\angle AKD = \angle ADK = x^{\circ}$. Then $\angle DAK = (180 - 2x)^{\circ}$.

Since ABCD is a rhombus, $AB \parallel CD$ and $\angle ADC + \angle BCD = 180^{\circ}$. It follows that $\angle BCD = (180 - x)^{\circ}$. But in the rhombus we also have $BC \parallel AD$ and $\angle BCD + \angle ABC = 180^{\circ}$. It follows that $\angle ABC = 180^{\circ} - (180 - x)^{\circ} = x^{\circ}$.

In $\triangle AHB$, AH = AB and so $\triangle AHB$ is isosceles. Therefore, $\angle AHB = \angle ABH = x^{\circ}$. Then $\angle BAH = (180 - 2x)^{\circ}$.

Since ABCD is a rhombus, $BC \parallel AD,$ so

$$\angle BAD = 180^{\circ} - \angle ABC$$
$$(180 - 2x)^{\circ} + 60^{\circ} + (180 - 2x)^{\circ} = 180^{\circ} - x^{\circ}$$
$$(420 - 4x)^{\circ} = (180 - x)^{\circ}$$
$$240^{\circ} = (3x)^{\circ}$$
$$x^{\circ} = 80^{\circ}$$

It follows that

$$\angle BAD = (180 - x)^{\circ}$$
$$= 180^{\circ} - 80^{\circ}$$
$$= 100^{\circ}$$

Therefore, $\angle BAD = 100^{\circ}$.