

Problem of the Week Problem D and Solution
 The Whole Rectangle

Problem

In the diagram, $A B C D$ is a rectangle. Points F and G are on $D C$ (with F closer to D) such that $D F=F G=G C$. Point E is the midpoint of $A D$.
If the area of $\triangle B E F$ is $30 \mathrm{~cm}^{2}$, determine the area of rectangle $A B C D$.

Solution

Let $D F=F G=G C=y$. Then $A B=D C=3 y$ and $F C=2 y$.
Since E is the midpoint of $A D$, let $A E=E D=x$. Then $A D=B C=2 x$.

We will formulate an equation connecting the areas of the four triangles inside the rectangle to the area of the entire rectangle.

$$
\text { Area } \begin{aligned}
A B C D & =\text { Area } \triangle A B E+\text { Area } \triangle B C F+\text { Area } \triangle F D E+\text { Area } \triangle B E F \\
A D \times D C & =\frac{A E \times A B}{2}+\frac{B C \times F C}{2}+\frac{D F \times E D}{2}+30 \\
(2 x)(3 y) & =\frac{x \times 3 y}{2}+\frac{2 x \times 2 y}{2}+\frac{y \times x}{2}+30 \\
6 x y & =\frac{3 x y}{2}+2 x y+\frac{x y}{2}+30 \\
12 x y & =3 x y+4 x y+x y+60 \\
4 x y & =60 \\
x y & =15
\end{aligned}
$$

Therefore, the area of rectangle $A B C D$ is $A D \times D C=(2 x)(3 y)=6 x y=6(15)=90 \mathrm{~cm}^{2}$.

