

Problem of the Week
 Problem D and Solution

Five Digits

Problem

A sequence starts out with one 5 , followed by two 6 s , then three 7 s , four 8 s , five 9 s , six 5 s , seven 6 s , eight 7 s , nine 8 s , ten 9 s , eleven 5 s , twelve 6 s , and so on. (You should notice that only the five digits from 5 to 9 are used.)
The first 29 terms of the sequence appear below.

$$
5,6,6,7,7,7,8,8,8,8,9,9,9,9,9,5,5,5,5,5,5,6,6,6,6,6,6,6,7, \ldots
$$

Determine the $2022^{\text {nd }}$ digit in the sequence.

Solution

The first group in the sequence contains one 5 . The second group in the sequence contains two 6 s . To the end of the second group of digits, there is a total of $1+2=3$ digits. The third group in the sequence contains three 7 s . To the end of the third group of digits, there is a total of $1+2+3=6$ digits. The $n^{\text {th }}$ group in the sequence contains n digits. To the end of the $n^{\text {th }}$ group of digits, there is a total of $1+2+3+\cdots+n=\frac{n(n+1)}{2}$ digits.
How many groups of digits are required for there to be at least 2022 digits in the sequence?
We need to find the value of n so that $1+2+3+\cdots+n \geq 2022$ and
$1+2+3+\cdots+(n-1)<2022$. At this point we will use trial and error. At the end of the solution, a more algebraic approach to finding the value of n using the quadratic formula is presented.
Suppose $n=100$. Then $1+2+3+\cdots+100=\frac{100(101)}{2}=5050>2022$.
Suppose $n=50$. Then $1+2+3+\cdots+50=\frac{50(51)}{2}=1275<2022$.
Suppose $n=60$. Then $1+2+3+\cdots+60=\frac{60(61)}{2}=1830<2022$.
Suppose $n=65$. Then $1+2+3+\cdots+65=\frac{65(66)}{2}=2145>2022$.
Suppose $n=63$. Then $1+2+3+\cdots+63=\frac{63(64)}{2}=2016<2022$.
The $2022^{\text {nd }}$ digit is the sixth number in the next group of digits. That is, the $2022^{\text {nd }}$ digit is a digit in the $64^{\text {th }}$ group of digits.
Now, let's determine what digit is in the $64^{\text {th }}$ group of digits. Since we cycle through the digits and there are only five digits used, we can determine the digit by examining $\frac{64}{5}=12 \frac{4}{5}$. Thus, in the $64^{\text {th }}$ group of digits, the digit used is the $4^{\text {th }}$ digit in the sequence of digits. That is, in the $64^{\text {th }}$ group of digits, the digit used is an 8 .
Since the $2022^{\text {nd }}$ digit is in the $64^{\text {th }}$ group of digits, it follows that the $2022^{\text {nd }}$ digit is an 8 .

We will finish by showing how we can find the value of n algebraically.
We will first find the value of $n, n>0$, so that

$$
\begin{aligned}
\frac{n(n+1)}{2} & =2022 \\
n(n+1) & =4044 \\
n^{2}+n-4044 & =0
\end{aligned}
$$

The quadratic formula can be used to solve for n.

$$
\begin{aligned}
n & =\frac{-1 \pm \sqrt{1^{2}-4(1)(-4044)}}{2} \\
& =\frac{-1 \pm \sqrt{16177}}{2}
\end{aligned}
$$

Since $n=\frac{-1-\sqrt{16177}}{2}<0$, it is inadmissible.
Then $n=\frac{-1+\sqrt{16177}}{2} \approx 63.09$. But n is an integer. So, interpreting our result, when $n=63$, the sum $1+2+3+\cdots+63<2022$, and when $n=64$, the sum $1+2+3+\cdots+64>2022$. Thus, the $2022^{\text {nd }}$ digit is in the $64^{\text {th }}$ group of digits.

