Problem of the Week
 Problem D and Solution
 Reflect on This

Problem

$\triangle A B C$ has vertices $A(2,1), B(5,8)$, and $C(1, c)$, where $c>0$.
Vertices A and B are reflected in the y-axis, and vertex C is reflected in the x-axis. The three image points are collinear. That is, a line passes through the three image points.
Determine the coordinates of C.

Solution

When a point is reflected in the y-axis, the image point has the same y-coordinate and the x-coordinate is -1 multiplied by the pre-image x-coordinate. Thus, the image of $A(2,1)$ is $A^{\prime}(-2,1)$, and the image of $B(5,8)$ is $B^{\prime}(-5,8)$.
When a point is reflected about the x-axis, the image point has the same x-coordinate and the y-coordinate is -1 multiplied by the pre-image y-coordinate. Thus, the image of $C(1, c)$ is $C^{\prime}(1,-c)$.
The three image points, A^{\prime}, B^{\prime}, and C^{\prime}, are collinear.

Solution 1

In this solution, we find the equation of the line through the three image points. We begin by first determining the slope of the line, and then the y-intercept.

$$
\operatorname{slope}\left(A^{\prime} B^{\prime}\right)=\frac{8-1}{-5-(-2)}=-\frac{7}{3}
$$

Since $A^{\prime}(-2,1)$ lies on the line, we can substitute $x=-2, y=1$, and $m=-\frac{7}{3}$ into $y=m x+b$.

$$
\begin{aligned}
1 & =-\frac{7}{3}(-2)+b \\
1 & =\frac{14}{3}+b \\
b & =1-\frac{14}{3} \\
& =-\frac{11}{3}
\end{aligned}
$$

Thus, the equation of the line through the three image points is $y=-\frac{7}{3} x-\frac{11}{3}$. Since the point $C^{\prime}(1,-c)$ lies on this line, we can substitute $x=1$ and $y=-c$ into the equation to solve for c. Thus, $-c=-\frac{7}{3}(1)-\frac{11}{3}=-\frac{18}{3}=-6$ and $c=6$ follows.
Therefore, the coordinates of C are $(1,6)$.

Solution 2

Since $A^{\prime}(-2,1), B^{\prime}(-5,8)$, and $C^{\prime}(1,-c)$ are collinear, slope $\left(A^{\prime} B^{\prime}\right)=\operatorname{slope}\left(B^{\prime} C^{\prime}\right)$.

$$
\begin{aligned}
\operatorname{slope}\left(A^{\prime} B^{\prime}\right) & =\operatorname{slope}\left(B^{\prime} C^{\prime}\right) \\
\frac{8-1}{-5-(-2)} & =\frac{-c-8}{1-(-5)} \\
\frac{7}{-3} & =\frac{-c-8}{6} \\
42 & =3 c+24 \\
18 & =3 c \\
6 & =c
\end{aligned}
$$

Therefore, the coordinates of C are $(1,6)$.

