Problem of the Week
 Problem E and Solution
 Sliding Parabola

Problem

Suppose the parabola with equation $y=4-x^{2}$ has vertex at P and crosses the x-axis at points A and B, with B lying to the right of A on the x-axis.

This parabola is translated so that its vertex moves along the line $y=x+4$ to the point Q. The new parabola crosses the x-axis at points B and C, with C lying to the right of B on the x-axis.

Determine the coordinates of C.

Solution

For the original parabola $y=-x^{2}+4$, the vertex is $P(0,4)$ and the x-intercepts are $A(-2,0)$ and $B(2,0)$.
Let the vertex of the translated parabola be $Q(q, p)$. Since the new parabola is a translation of the original, the equation of this new parabola is $y=-(x-q)^{2}+p$.
Since Q lies on the line $y=x+4$, we have $p=q+4$ and the equation of the new parabola is $y=-(x-q)^{2}+q+4$.
Since $B(2,0)$ lies on the new parabola, we can substitute $(2,0)$ into this equation:

$$
\begin{aligned}
& 0=-(2-q)^{2}+q+4 \\
& 0=-\left(q^{2}-4 q+4\right)+q+4 \\
& 0=-q^{2}+5 q \\
& 0=-q(q-5)
\end{aligned}
$$

Therefore, $q=0$ or $q=5$. The value $q=0$ corresponds to point $P(0,4)$ in the original parabola. Therefore, $q=5$. From here we will show two solutions.

Solution 1

Since $q=5$, the axis of symmetry for the new parabola is $x=5$. To find C we need to reflect the point $B(2,0)$ in the axis of symmetry to get $C(8,0)$.

Solution 2

Since $q=5$, then the vertex of the new parabola is $(5,9)$ and the equation of this parabola is $y=-(x-5)^{2}+9$.
Since C is an x-intercept of this parabola, to determine C we set $y=0$ in the equation for the parabola and solve for x.

$$
\begin{aligned}
0 & =-(x-5)^{2}+9 \\
(x-5)^{2} & =9 \\
x-5 & = \pm 3 \\
x & =8,2
\end{aligned}
$$

The value $x=2$ corresponds to point B, and the value $x=8$ corresponds to point C.
Therefore, the coordinates of C are $(8,0)$.

