

Problem of the Week
 Problem E and Solution
 Wipe Away 3

Problem

Tyra writes consecutive positive integers on a whiteboard starting with the integer 1. However, when she writes a number that is a multiple of 9 , or contains the digit 9 , Juliana immediately erases it. If they continue this for a long time, what is the $400^{\text {th }}$ number that Juliana will erase?

Note: In solving this problem, it may be helpful to use the fact that a number is divisible by 9 exactly when the sum of its digits is divisible by 9 . For example, the number 214578 is divisible by 9 since $2+1+4+5+7+8=27$, which is divisible by 9 . In fact, $214578=9 \times 23842$.

Solution

We first consider the integers between 1 and 999 , inclusive. Since $999=111 \times 9$, there are 111 multiples of 9 between 1 and 999.
Now let's figure out how many of the integers from 1 to 999 contain the digit 9 . The integers from 1 to 99 that contain the digit 9 are $9,19, \ldots, 79,89$ as well as $90,91, \ldots, 97,98,99$. Thus, there are 19 positive integers from 1 to 99 that contain the digit 9 . Since there are 19 integers from 1 to 99 that contain the digit 9 , it follows that there are $19 \times 9=171$ integers from 1 to 899 that contain the digit 9 .

Between 900 and 999, every integer contains the digit 9. Thus, there are 100 numbers that contain the digit 9 . Thus, in total, $171+100=271$ of the integers from 1 to 999 contain the digit 9 .

However, some of the integers that contain the digit 9 are also multiples of 9 , so were counted twice. To determine how many of these such numbers there are, we use the fact that a number is divisible by 9 exactly when the sum of its digits is divisible by 9 .

- The only one-digit number that contains the digit 9 and is also a multiple of 9 is 9 itself.
- The only two-digit numbers that contain the digit 9 and are also multiples of 9 are 90 and 99.
- To find the three-digit numbers that contain the digit 9 and are also multiples of 9 , we will look at their digit sum.
- Case 1: Three digit-numbers with a digit sum of 9:

The only possibility is 900 . Thus, there is 1 number.

- Case 2: Three digit-numbers with a digit sum of 18:
* If two of the digits are 9 , then the other digit must be 0 . The only possibilities are 909 and 990 . Thus, there are 2 numbers.
* If only one of the digits is 9 , then the other two digits must add to 9 . The possible digits are $9,4,5$, or $9,3,6$, or $9,2,7$, or $9,8,1$. For each of these sets of digits, there are 3 choices for the hundreds digit. Once the hundreds
digit is chosen, there are 2 choices for the tens digit, and then the remaining digit must be the ones digit. Thus, there are $3 \times 2=6$ possible three-digit numbers for each set of digits. Since there are 4 sets of digits, then there are $4 \times 6=24$ possible numbers.
- Case 3: Three digit-numbers with a digit sum of 27 :

The only possibility is 999 . Thus, there is 1 number.
Therefore, there are $1+2+24+1=28$ three-digit numbers from 1 to 999 that contain the digit 9 , and are also multiples of 9 .

Thus, there are $1+2+28=31$ integers from 1 to 999 that contain the digit 9 , and are also multiples of 9. It follows that Juliana erases $111+271-31=351$ of the numbers from 1 to 999 from the whiteboard. Since we are looking for the $400^{\text {th }}$ number that Juliana erases, we need to keep going.

Next, we consider the integers between 1000 and 1099, inclusive. Since $1099=(122 \times 9)+1$, there are 122 multiples of 9 between 1 and 1099. Since there are 111 multiples of 9 between 1 and 999, it follows that there are $122-111=11$ multiples of 9 between 1000 and 1099. The integers between 1000 and 1099 that contain the digit 9 are $1009,1019, \ldots, 1079,1089$ as well as $1090,1091, \ldots, 1097,1098,1099$. Thus, there are 19 integers from 1000 to 1099 that contain the digit 9. Of these, the only integers that are also multiples of 9 are 1089 and 1098. Thus, Juliana erases $11+19-2=28$ of the numbers from 1000 to 1099 from the whiteboard. In total, she has now erased $351+28=379$ numbers.

Next, we consider the integers between 1100 and 1189 , inclusive. Since $1189=(132 \times 9)+1$, there are 132 multiples of 9 between 1 and 1189. Since there are 122 multiples of 9 between 1 and 1099, it follows that there are $132-122=10$ multiples of 9 between 1100 and 1189. The integers between 1100 and 1189 that contain the digit 9 are 1109, 1119, .., 1179, 1189. Thus there are 9 integers from 1100 to 1189 that contain the digit 9 . The only one of these that is also a multiple of 9 is 1179 . Thus, Juliana erases $10+9-1=18$ of the numbers from 1100 to 1189 from the whiteboard. In total, she has now erased $379+18=397$ numbers.

The next three numbers that Juliana will erase are 1190, 1191, and 1192. Thus, the $400^{\text {th }}$ number that Juliana erases is 1192.

