

Problem of the Week Problem D and Solution The Same Power

Problem

Sometimes two powers that are not written with the same base are still equal in value. For example, $9^3 = 27^2$ and $(-5)^4 = 25^2$.

If x and y are integers, find all ordered pairs (x, y) that satisfy the equation

$$(x-1)^{x+y} = 8^2$$

Solution

Since $8^2 = 64$, we want to look at how we can express 64 as a^b where a and b are integers. There are six ways to do so. We can do so as 64^1 , 8^2 , 4^3 , 2^6 , $(-2)^6$, and $(-8)^2$.

We use these powers and the expression $(x-1)^{x+y}$ to find values for x and y.

- The power $(x-1)^{x+y}$ is expressed as 64^1 when x-1=64 and x+y=1. Then x=65 and y=-64 follows. Thus (65,-64) is one pair.
- The power $(x-1)^{x+y}$ is expressed as 8^2 when x-1=8 and x+y=2. Then x=9 and y=-7 follows. Thus (9,-7) is one pair.
- The power $(x-1)^{x+y}$ is expressed as 4^3 when x-1=4 and x+y=3. Then x=5 and y=-2 follows. Thus (5,-2) is one pair.
- The power $(x-1)^{x+y}$ is expressed as 2^6 when x-1=2 and x+y=6. Then x=3 and y=3 follows. Thus (3,3) is one pair.
- The power $(x-1)^{x+y}$ is expressed as $(-2)^6$ when x-1=-2 and x+y=6. Then x=-1 and y=7 follows. Thus (-1,7) is one pair.
- The power $(x-1)^{x+y}$ is expressed as $(-8)^2$ when x-1=-8 and x+y=2. Then x=-7 and y=9 follows. Thus (-7,9) is one pair.

Therefore, there are six ordered pairs that satisfy the equation. They are (65, -64), (9, -7), (5, -2), (3, 3), (-1, 7), and (-7, 9).