Problem of the Week

 Problem D and SolutionThe Same Power

Problem

Sometimes two powers that are not written with the same base are still equal in value. For example, $9^{3}=27^{2}$ and $(-5)^{4}=25^{2}$.

If x and y are integers, find all ordered pairs (x, y) that satisfy the equation

$$
(x-1)^{x+y}=8^{2}
$$

Solution

Since $8^{2}=64$, we want to look at how we can express 64 as a^{b} where a and b are integers. There are six ways to do so. We can do so as $64^{1}, 8^{2}, 4^{3}, 2^{6},(-2)^{6}$, and $(-8)^{2}$.
We use these powers and the expression $(x-1)^{x+y}$ to find values for x and y.

- The power $(x-1)^{x+y}$ is expressed as 64^{1} when $x-1=64$ and $x+y=1$. Then $x=65$ and $y=-64$ follows. Thus $(65,-64)$ is one pair.
- The power $(x-1)^{x+y}$ is expressed as 8^{2} when $x-1=8$ and $x+y=2$. Then $x=9$ and $y=-7$ follows. Thus $(9,-7)$ is one pair.
- The power $(x-1)^{x+y}$ is expressed as 4^{3} when $x-1=4$ and $x+y=3$. Then $x=5$ and $y=-2$ follows. Thus $(5,-2)$ is one pair.
- The power $(x-1)^{x+y}$ is expressed as 2^{6} when $x-1=2$ and $x+y=6$. Then $x=3$ and $y=3$ follows. Thus $(3,3)$ is one pair.
- The power $(x-1)^{x+y}$ is expressed as $(-2)^{6}$ when $x-1=-2$ and $x+y=6$. Then $x=-1$ and $y=7$ follows. Thus $(-1,7)$ is one pair.
- The power $(x-1)^{x+y}$ is expressed as $(-8)^{2}$ when $x-1=-8$ and $x+y=2$. Then $x=-7$ and $y=9$ follows. Thus $(-7,9)$ is one pair.

Therefore, there are six ordered pairs that satisfy the equation.
They are $(65,-64),(9,-7),(5,-2),(3,3),(-1,7)$, and $(-7,9)$.

