WATERLOO

Tsunami Detector Placement

A 1,000 km by 600 km rectangular area within international waters must be monitored for tsunamis. Suppose a tsunami detector can monitor a circular area within a radius of 200 km.

- (a) Determine a way to arrange 12 tsunami detectors so that the entire rectangular area is within range of at least one detector.
- (b) What percentage of the rectangular area is within range of exactly one detector?

Connection to the Real World

An earthquake under the ocean can trigger a deadly tsunami, washing huge waves of water onto land. Tsunami detectors provide advanced warning of an impending tsunami, saving lives when people are warned to evacuate an area before a tsunami strikes.

Since agencies can afford only a small number of tsunami detectors, it is critical to arrange the detectors to cover as wide an area as possible.

For more Real-World Problems Being Solved by Mathematics, visit http://www.cemc.uwaterloo.ca/resources/real-world.html.

Solution:

(a) Here is one arrangement, with a detector at the centre of each 200 km radius circle.

(b) The total rectangular area to be monitored measures 1,000 km $\times 600$ km = 600,000 km².

To find the area within range of just one detector, we first find the area within range of more than one detector - corresponding to the overlap of circles. Any two circles that overlap have their centres at opposite corners of a square of length 200 km. Label the area of overlap as y; by symmetry, the other two (shaded) areas are equal to each other.

Since the area of each circle is $40,000\pi$ km², the area of a quarter circle sector is $10,000\pi$ km², and each shaded area is equal to $(10,000\pi - y)$ km².

Since the area of the square is 200 km \times 200 km = 40,000 km²,

$$2(10,000\pi - y) + y = 40,000$$

$$20,000\pi - 2y + y = 40,000$$

$$y = 20,000\pi - 40,000$$

$$y = 20,000(\pi - 2)$$

Within the rectangular area there are 15 such circle overlaps, each having area $y \text{ km}^2$. Therefore the area (in km²) within range of just one tsunami detector is

$$600,000 - 15y = 600,000 - 15[20,000(\pi - 2)]$$
$$= 120,000 - 300,000\pi$$
$$= 300,000(4 - \pi)$$

The percentage of area represented is thus $\frac{300,000(4-\pi)}{600,000} \times 100\% = \frac{4-\pi}{2} \times 100\% \approx 43\%$.